Canopy spectral invariants for remote sensing and model applications
نویسندگان
چکیده
The concept of canopy spectral invariants expresses the observation that simple algebraic combinations of leaf and canopy spectral transmittance and reflectance become wavelength independent and determine a small set of canopy structure specific variables. This set includes the canopy interceptance, the recollision and the escape probabilities. These variables specify an accurate relationship between the spectral response of a vegetation canopy to the incident solar radiation at the leaf and the canopy scale and allow for a simple and accurate parameterization for the partitioning of the incoming radiation into canopy transmission, reflection and absorption at any wavelength in the solar spectrum. This paper presents a solid theoretical basis for spectral invariant relationships reported in literature with an emphasis on their accuracies in describing the shortwave radiative properties of the three-dimensional vegetation canopies. The analysis of data on leaf and canopy spectral transmittance and reflectance collected during the international field campaign in Flakaliden, Sweden, June 25 – July 4, 2002 supports the proposed theory. The results presented here are essential to both modeling and remote sensing communities because they allow the separation of the structural and radiometric components of the measured/modeled signal. The canopy spectral invariants offer a simple and accurate parameterization for the shortwave radiation block in many global models of climate, hydrology, biogeochemistry, and ecology. In remote sensing applications, the information content of hyperspectral data can be fully exploited if the wavelength independent variables can be retrieved, for they can be more directly related to structural characteristics of the three dimensional vegetation canopy.
منابع مشابه
Remote sensing of vegetation based on canopy spectral invariants
The concept of canopy spectral invariants states that simple algebraic combinations of leaf and canopy spectral transmittance and reflectance become wavelength independent and determine a small set of canopy structure specific variables. This set of structural variables specify the spectral response of a vegetation canopy to the incident solar radiation and allow for a simple and accurate param...
متن کاملEstimating Crop Albedo in the Application of a Physical Model Based on the Law of Energy Conservation and Spectral Invariants
Albedo characterizes the radiometric interface of land surfaces, especially vegetation, and the atmosphere. Albedo is a critical input to many models, such as crop growth models, hydrological models and climate models. For the extensive attention to crop monitoring, a physical albedo model for crops is developed based on the law of energy conservation and spectral invariants, which is derived f...
متن کاملCanopy spectral invariants. Part 1 A new concept in remote sensing of vegetation
The concept of canopy spectral invariants expresses the observation that simple algebraic combinations of leaf and canopy spectral reflectance become wavelength independent and determine two canopy structure specific variables – the recollision and escape probabilities. These variables specify an accurate relationship between the spectral response of a vegetation canopy to incident solar radiat...
متن کاملAuthor's Personal Copy Canopy Spectral Invariants. Part 1: a New Concept in Remote Sensing of Vegetation
The concept of canopy spectral invariants expresses the observation that simple algebraic combinations of leaf and canopy spectral reflectance become wavelength independent and determine two canopy structure specific variables – the recollision and escape probabilities. These variables specify an accurate relationship between the spectral response of a vegetation canopy to incident solar radiat...
متن کاملModelling Canopy Reflectance with Spectral Invariants
ABSTRACT: The concept of using spectral invariants to describe the scattering and absorption processes in a vegetation canopy has been developed for application to remote sensing studies in recent years. It has been shown that an average ‘recollision probability’ can describe the main impacts of structure on directional-hemispherical scattering and transmission, and there has been some indicati...
متن کامل